If you want to start a good discussion – maybe even a good argument – in a room full of instructors, just ask the question, “If you had to lose all your nav or all your comm equipment, which would you rather be without?” If you ask this question to pilots who always fly at large airports, they might say “take away my nav but let me talk to the controller to keep me away from traffic.” If you ask a pilot who fly in remote areas, they might respond with, “who needs controllers as long as I can navigate?”

Now ask the same question about the function of an enroute chart. Is it for navigation, or is it for communication? And then the next question, “What about the guys who design the charts? What do they think is more important – nav or comm?” One thing we learned at Jeppesen after we published the new low altitude enroute chart series was that pilots have a lot more use for the communications on the enroute charts than we first believed. The good news is that the communications tabulations on the front panels of the low altitude charts are coming back.

Sometimes, we would like to have you on the receiving end of the “Jeppesen Listens” response cards. You would get an earful! We hear you – if you want to start a good discussion – maybe even a good argument – in a room full of instructors, just ask the question, “If you had to lose all your nav or all your comm equipment, which would you rather be without?” If you ask this question to pilots who always fly at large airports, they might say “take away my nav but let me talk to the controller to keep me away from traffic.” If you ask a pilot who fly in remote areas, they might respond with, “who needs controllers as long as I can navigate?”

Communications Tabulations

For discussion purposes, a section of the new “Comm Tabs” from US(LO) 7/8 is illustrated. The first entry for Great Falls, Mont shows “p8B” to the right of the city name. These characters indicate that the Great Falls airport can be found on panel 8 of the chart in quadrant B. Each panel is included in the Communications Tabulations on the front panels of the low altitude charts. They are in the folds that are naturally on the left and right at the top of the “Zigdex.” Each panel is included on the chart between the “outside” folds. These are the folds that are naturally on the left and right when you open to only one section of the chart. When the chart is opened this way, there are four sections labeled A, B, C, and D. This indexing system on the Comm Tabs negates the need for the “City Location Guide” which will disappear.

You might wonder why the letters “MONT” represent the abbreviation for Montana instead of the state postal code letters “MT.” Well, let me ask you this: What are the two-letter codes that fly to the United States, but they are not necessarily known by pilots from the United States? They happen to be DE, CH, ES, and NL. Our two-letter postal codes may be known by remote areas, they might respond with, “who needs controllers as long as I can navigate?”

Communications – On the Face of the Chart

All Flight Service Station (FSS) frequencies are shown on the face of the chart near the location of their antennae. This can be just above the navaid frequency box, above the airports where their remote site might be located, or at remote sites indicated by a small dot enclosed by a small circle. Under the entry for Great Falls, note that the words Great Falls, App(R)/Dep(R), Twr, and Gnd are in bold. When the words and letters are in bold type, this indicates the names to be used in voice communications. For example, a call to approach control would be “Great Falls Approach,” not “Great Falls International Approach” because the word Intl is not in bold. At Hailey, Idaho, it is easy to see that a call to the tower would be “Hailey Tower” and not “Friedman Memorial Tower.”

The capital letter “R” in parentheses after the letters “App” at Great Falls indicates that radar is available for the approach controllers at Great Falls. Keep in mind that the lack of the letter “R” does not necessarily mean that radar is not available. It is always a good idea to ask when first contacting Approach Control. The communications information included on the Comm Tabs includes the frequencies and call names for approach and departure control, tower, and ground control as well as radar capability (when known).

Some airports are just complicated! As an example, the Approach Control sectorization for Salt Lake City, Utah has divisions broken up by runways, Class B airspace, altitudes, and latitudes. It doesn’t get much more difficult to figure out which frequency to use to initiate a call to Salt Lake City Approach. (Actually just file IFR to Salt Lake and the center will hand you off with the right frequency.) But, if you are VFR to Salt Lake and need an IFR clearance to get into the airport, or if you just want to contact the right frequency when landing VFR, all the sectorization warrants a little study beforehand.

With the Comm Tabs, it is just as important to know what is not included as what is included. Because more information is now included on the face of the charts, it is not necessary to duplicate the information on the Comm Tabs. As an example, ATIS is now included with the airport and not in the Comm Tabs. Other information now on the face of the chart but not in the Comm Tab listing includes LAA, CTAF, Flight Service Stations, and ASOS and AWOS. Clearance delivery frequencies are included only on the IFR airport diagram charts.
Most of the FSS frequencies are on or near airports rather than VORs, so we'll look at three different airports to see how to find FSS frequencies. We'll first look at Bozeman, an airport that formerly had a Flight Service Station but is now served by Great Falls FSS about 100 miles away. Available frequencies are now “stacked” above the airport information in the following sequence (when available): ATIS, ASOS, AWOS-3, RCO, LAA, and CTAF. At Bozeman, the current weather can be received by listening to the ASOS frequency of 135.42.

If you want to talk to the FSS near Bozeman, you can call Great Falls Flight Service on 122.5 MHz. This is important for opening and closing VFR flight plans as well as closing IFR flight plans. After Salt Lake Center has cleared you for approach and you are ready to cancel your flight plan, Great Falls will take care of you on 122.5. Remember, since Great Falls has many VHF frequencies, you need to inform them you are listening on 122.5. For example, you would call “Great Falls Radio, Baron 7928R listening 122.5.”

Beginning with the June enroute chart revisions, the CTAF (Common Traffic Advisory Frequency) will also be included with each airport. At Bozeman, the CTAF is 122.7 MHz.

When operating at airports that have only a Flight Service Station and no tower, the FSS should be contacted on 123.6 MHz – but this is rare! The service provided by FSS called LAA (Local Airport Advisory) is disappearing into history as Flight Service Stations are consolidating. The remaining Flight Service Stations are mostly located at airports with towers, so LAA is rarely available. When it is there, the letters LAA will be shown above the airport name with the frequency of 123.6 MHz.

At Butte, Montana, a remote site for the Cedar City Flight Watch is located near the airport. This is indicated by Cedar City WX – *2.0. The asterisk in front of the frequency indicates that Flight Watch is available only on a part time basis. The Great Falls FSS has remote communications at Butte on the frequencies of 122.0, 122.4, and 122.65 MHz.

At Helena, ATIS is available on 120.4 MHz but is only part time, which again is shown by the asterisk. Since the tower at Helena is part time, the CTAF frequency of 118.3 MHz (which is the same as the day time tower frequency) is to be used when the tower is closed during night time hours. Great Falls FSS can be contacted on 122.55 MHz.

There are many more communication frequencies on the face of the chart. We will continue our discussion next month with more of the “comms.”